

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 1

CYBER THREAT ANALYSIS ON ANDROID APPS

1 K. Lakshmi Priya, 2 P.Swetha, 3 S.Priskilla Manonmani,

1,2 Final Year Students, 3 Assistant Professor,

1,2,3 Department of Information technology,

1,2,3 Meenakshi Sundararajan Engineering College,Chennai-21

1 lakshmipriya3004@gmail.com

ABSTRACT

 In recent years, the usages of smart phones

are increasing steadily and also growth of

Android application users are increasing. Due

to growth of Android application user, some

intruder is creating malicious android

application as tool to steal the sensitive data

and identity theft / fraud mobile bank, mobile

wallets.

 There are so many malicious

applications detection tools and software are

available. But an effectively and efficiently

malicious applications detection tools needed

to tackle and handle new complex malicious

apps created by intruder or hackers. In this

paper we came up with idea of using machine

learning approaches for detecting the malicious

android application. First we have to gather

dataset of past malicious apps as training set

and with the help of Support vector machine

algorithm and decision tree algorithm make up

comparison with training dataset and trained

dataset we can predict the malware android

apps up to 93.2 % unknown / New malware

mobile application.

Keywords: dataset, machine learning

algorithm- ensemble methods, python,

predicting the accuracy of result, malware,

threat analysis

1. INTRODUCTION

 Smartphones have become an integral

part of our day-to-day life. New data for

December 2018 shows that Android remains

the most popular mobile operating system, with

a worldwide market share of 75.16%. With

over one million Android applications in major

app stores, applications such as We Chat,

TikTok, and mobile banking applications are

used in our daily life and continue to play an

increasingly important role.

 Most of these applications have access

to users’ private information such as their

location, credit card, and contact information.

Almost all applications access the users’ private

data, although this provides users with better

personalized services. It may also result in

information leakage of private data and

economic loss. Currently, static analysis and

dynamic analysis are the two main types of

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 2

detection methods. Each approach has its merits

and shortcomings. The static analysis methods

such as Kirin, PApriori and DREBIN analyze

applications without executing the program

requiring low overheads. However, the methods

cannot defend against antide compiling and

obfuscation.

 With malware being rapidly evolving,

the machine learning method is used to perform

Android malware detection. Consequently,

gathering features that better represent

malicious behavior as the features of machine

learning is beneficial to improve the

performance of malware detection.

 By itself, Android has several security

mechanisms in its different layers. The

permission mechanism applied in the

application layer is an important defence

mechanism to protect sensitive resources on the

Android platform.

 Applications must declare dangerous

permissions to access sensitive data. Several

studies have investigated Android malicious

applications based on the declared permissions,

using permission-based methods. Although

these methods avoid high overhead, they

consider the declared permissions as the

features of machine learning, which cannot

truly reflect the difference between benign

applications and malicious applications.

 Thus, they cannot detect malicious

applications that declare only a few, or

dangerous permissions, which are also always

declared by benign applications. Compared

with permissions as features, application

programming interfaces (APIs) represent the

entire picture of application behavior provided

by the Android system.

 DroidAPIMiner exploits data flow

analysis to extract the numbers of APIs used in

malicious applications and benign applications

to analyze the difference between them, which

is similar to these methods. In general, the API

feature set contains a very large number of

features, and therefore, detection methods need

extra time to extract the API features and to

train detection models. It is worth noting that

there is a corresponding relation between

permissions and APIs.

 In this paper, we present FDP, a

lightweight Android malware detection method

to mine hidden patterns of malware. According

to previous studies, there is considerable

difference between malicious applications and

benign applications in terms of the declared

permissions.

 In addition, some dangerous

permissions declared for different components

reflect the purpose of the developers. It can be

used to distinguish different purposes of the

same dangerous permission. These features can

represent the difference between benign

applications and malicious applications. In

terms of efficiency, FDP uses static methods to

gather all features and analyzes an application

in a reasonable time.

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 3

 2. PROPOSED SYSTEM

 In proposed paper, we implements

SIGPID, Significant Permission Identification

(SIGPID).The goal of the sigid is to improve

the apps permissions effectively and efficiently.

This SIGPID system improves the accuracy and

efficient detection of malware application. With

the help of machine learning algorithms such as

SVM and Decision Tree algorithms make a

comparison between training dataset and

trained dataset .Support vector machine

algorithms act as a classifier which is used to

classify malicious application and benign app.

 We first use SVM and a small dataset to test

our proposed MLDP model.

 SVM determines a hyper plane/matrix

that separates both classes with a maximal

margin based on the training dataset that

includes benign and malicious applications. In

this case, one class is associated with malware,

and the other class is associated with benign

apps. Then, we assume the testing data as

unknown apps, which are classified by mapping

the data to the vector space to decide whether it

is on the malicious or benign side of the hyper

plane. Then, we can compare all analysis

results with their original records to evaluate

the malware detection correctness of the

proposed model by using SVM. In order to

show applicability and scalability of MLDP, we

employ 67 commonly known machine learning

algorithms and enlarge our dataset.

 We compare the results between

malware detection rate using all identified 135

permissions (baseline) and malware detection

using MLDP for each supervised machine

learning algorithm. We observe that, by

analyzing all permissions, machine learning

algorithms with a tree structure, usually build

better malware detection compared to others.

Among all the machine learning algorithms

with a tree structure, our method works best on

decision tree, which is a very common

classification method in machine learning.

Decision tree should use training dataset to

build a classifier to decide which class the

testing data should be, requires a lot of pre-

processing work before the classifier was built.

When there are too many attributes of training

dataset, decision tree hits a poor accuracy and

the training phase tend to take more time and

memory. So, the pruning of the decision tree is

imperative, which is consistent with our MLDP.

Consequently, it is more advantageous to use

MLDP to perform malware detection as it can

be as effective while notably conserving time

and memory.

 Significant Permission Identification

for Android Malware Detection. (SIGPID):

 The goal of Significant Permission

Identification (SIGPID) system is to achieve

high malware detection accuracy and efficiency

while analyzing the minimal number of

permissions. To achieve this goal, our system

extracts permission uses from application

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 4

packages, but instead of focusing on all the

requested permissions, SIGPID mainly focuses

on permissions that can reliably improve the

malware detection rate. This approach, in

effect, eliminates the need to analyze

permissions that have little or no significant

influence on malware detection effectiveness.

In a nutshell, SIGPID prunes permissions that

have low impacts on detection effectiveness

using multi-level data pruning to reduce

analysis efforts.

 Our system consists of three major

components, designed based on real-time data

analysis: (i) permission ranking with negative

rate; (ii) support based permission ranking; and

(iii) permission mining with association rules.

After pruning, SIGPID employs supervised

machine learning classification methods to

identify potential Android malware. Finally,

SIGPID reports malware detection summary to

the analysts.

Multi-Level Data Pruning (MLDP)

 The first component of SIGPID is the

multi-level data pruning process to identify

significant permissions to eliminate the need of

considering all available permissions in

Android. No app requests all the permissions,

and the ones that an app requests are listed in

the Android application package (APK) as part

of manifest.xml. When we need to analyze a

large number of apps (e.g., several hundred

thousand), the total number of permissions

requested by all apps can be overwhelmingly

large, resulting in long analysis time. This high

analysis overhead can negatively affect the

malware detection efficiency as it reduces

analyst productivity. We propose three levels of

data pruning methods to filter out permissions

that contribute little to the malware detection

effectiveness. Thus, they can be safely removed

without benign apps malicious.

3.ALGORITHM

ENSEMBLE

 Ensemble methods are meta-algorithms

that combine several machine learning

techniques into one predictive model in order to

decrease variance (bagging), bias(boosting), or

improve predictions(stacking). Ensemble

methods can be divided into two groups:

o Sequential ensemble methods where the

base learners are generated sequentially

(e.g. AdaBoost). The basic motivation of

sequential methods is to exploit the

dependence between the base learners.

The overall performance can be boosted

by weighing previously mislabelled

examples with higher weight.

o parallel ensemble methods where the base

learners are generated in parallel (e.g.

Random Forest). The basic motivation of

parallel methods is to exploit

independence between the base learners

since the error can be reduced

dramatically by averaging.

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 5

 Most ensemble methods use a single

base learning algorithm to produce

homogeneous base learners, i.e. learners of the

same type, leading to homogeneous ensembles.

There are also some methods that use

heterogeneous learners, i.e. learners of different

types, leading to heterogeneous ensembles. In

order for ensemble methods to be more

accurate than any of its individual members, the

base learners have to be as accurate as possible

and as diverse as possible.

BAGGING

 Bagging stands for bootstrap

aggregation. One way to reduce the variance of

an estimate is to average together multiple

estimates. For example, we can train M

different trees on different subsets of the data

(chosen randomly with replacement) and

compute the ensemble:

Bagging uses bootstrap sampling to obtain the

data subsets for training the base learners. For

aggregating the outputs of base learners,

bagging uses voting for classification and

averaging for regression.

BOOSTING

 Boosting refers to a family of

algorithms that are able to convert weak

learners to strong learners. The main principle

of boosting is to fit a sequence of weak

learners− models that are only slightly better

than random guessing, such as small decision

trees− to weighted versions of the data. More

weight is given to examples that were

misclassified by earlier rounds. The predictions

are then combined through a weighted majority

vote (classification) or a weighted sum

(regression) to produce the final prediction. The

principal difference between boosting and the

committee methods, such as bagging, is that

base learners are trained in sequence on a

weighted version of the data.

STACKING

 Stacking is an ensemble learning

technique that combines multiple classification

or regression models via a meta-classifier or a

meta-regress or. The base level models are

trained based on a complete training set, then

the meta-model is trained on the outputs of the

base level model as features.

 The base level often consists of different

learning algorithms and therefore stacking

ensembles are often heterogeneous.

SUPPORT VECTOR MACHINE

 Support Vector Machine or SVM is one

of the most popular Supervised Learning

algorithms, which is used for Classification as

well as Regression problems. However,

primarily, it is used for Classification problems

in Machine Learning. The goal of the SVM

algorithm is to create the best line or decision

boundary that can segregate n-dimensional

space into classes so that we can easily put the

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 6

new data point in the correct category in the

future. This best decision boundary is called a

hyper plane.

DECISION TREE ALGORITHM

 Decision Tree algorithm belongs to the

family of supervised learning algorithms.

Unlike other supervised learning algorithms,

the decision tree algorithm can be used for

solving regression and classification problems

too.

 The goal of using a Decision Tree is to

create a training model that can use to predict

the class or value of the target variable by

learning simple decision rules inferred from

prior data(training data). In Decision Trees, for

predicting a class label for a record we start

from the root of the tree. We compare the

values of the root attribute with the record’s

attribute. On the basis of comparison, we

follow the branch corresponding to that value

and jump to the next node.

NAIVE BAYES

 Naive Bayes classifiers are a collection

of classification algorithms based on Bayes’

Theorem. It is not a single algorithm but a

family of algorithms where all of them share a

common principle, i.e. every pair of features

being classified is independent of each other.

Gaussian Naive Bayes classifier

 In Gaussian Naive Bayes, continuous

values associated with each feature are assumed

to be distributed according to a Gaussian

distribution. A Gaussian distribution is also

called Normal distribution.

4.MODULE

DATA COLLECTION

 ML depends heavily on data. It’s the

most crucial aspect that makes algorithm

training possible and explains why machine

learning became so popular in recent years. But

regardless of your actual terabytes of

information and data science expertise, if you

can’t make sense of data records, a machine

will be nearly useless or perhaps even harmful.

Data collection is the process of gathering and

measuring information from countless different

sources. In order to use the data we collect to

develop practical artificial intelligence (AI) and

machine learning solutions, it must be collected

and stored in a way that makes sense for the

business problem at hand.

 In a nutshell, data preparation is a set of

procedures that helps make your dataset more

suitable for machine learning. In broader terms,

the data prep also includes establishing the right

data collection mechanism. And these

procedures consume most of the time spent on

machine learning.

 To classify about the android apps we

searched a dataset which consist of 1000 of

applications . In 2020 we explored Android

Genome Project

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 7

(MalGenome), it is a dataset which was active

from 2015 until the end of the year 2020, this

set of malware has a size of 1260 applications,

grouped into a total of 49 families. Today, we

can find other jobs such as: Drebin, a research

project offering a total of 5560 applications

consisting of 179 malware families;

AndrooZoo, which includes a collection of

5669661 applications Android from different

sources (including Google Play); VirusShare,

another repository that provides samples of

malware for cyber security researchers; and

Droid Collector, this is another set which

provides around 8000 benign applications and

5560 malware samples, moreover, it facilitates

us samples of network traffic as pcap files. So

we collected the data set from kaggle .

PRE PROCESSING

 Organize your selected data by

formatting, cleaning and sampling from it.

Three common data pre-processing steps are:

1. Formatting

2. Cleaning

3. Sampling

 Formatting: The data you have

selected may not be in a format that is suitable

for you to work with. The data may be in a

relational database and you would like it in a

flat file, or the data may be in a proprietary file

format and you would like it in a relational

database or a text file.

Cleaning: Cleaning data is the removal or

fixing of missing data. There may be data

instances that are incomplete and do not carry

the data you believe you need to address the

problem. These instances may need to be

removed. Additionally, there may be sensitive

information in some of the attributes and these

attributes may need to be anonym zed or

removed from the data entirely.

Sampling: There may be far more selected data

available than you need to work with. More

data can result in much longer running times for

algorithms and larger computational and

memory requirements. You can take a smaller

representative sample of the selected data that

may be much faster for exploring and

prototyping solutions before considering the

whole dataset.

FEATURE EXTRACTION

 Next thing is to do Feature extraction is

an attribute reduction process. Unlike feature

selection, which ranks the existing attributes

according to their predictive significance,

feature extraction actually transforms the

attributes. The transformed attributes, or

features, are linear combinations of the original

attributes. Finally, our models are trained using

Classifier algorithm. We use classify module on

Natural Language Toolkit library on Python.

We use the labelled dataset gathered. The rest

of our labelled data will be used to evaluate the

models. Some machine learning algorithms

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 8

were used to classify pre-processed data. The

chosen classifiers were Decision Tree, Support

Vector Machine. These algorithms are very

popular in text classification tasks.

CLASSIFICATION

 The purpose of this phase is to select

different features for different classes by

applying the information gain or gain ratio in

order to identify relevant features for each

binary classifier. The attribute with the highest

normalized information gain is chosen to make

the decision. The C4.5 algorithm then recourse

on the smaller sub lists.

This algorithm has a few base cases.

 All the samples in the list belong to the

same class. When this happens, it

simply creates a leaf node for the

decision tree saying to choose that class.

 None of the features provide any

information gain. In this case, C4.5

creates a decision node higher up the

tree using the expected value of the

class.

 Instance of previously-unseen class

encountered. Again, C4.5 creates a

decision node higher up the tree using

the expected value.

EFFICIENCY CALCULATION

 The effect of combining different

classifiers can be explained with the theory of

bias-variance decomposition. Bias refers to an

error due to a learning algorithm while variance

refers to an error due to the learned model. This

is why the idea emerged of combining both in

order to profit from the advantages of both

algorithms and obtain an overall error

reduction.

 The concept of bagging (voting for

classification, averaging for regression-type

problems with continuous dependent variables

of interest) applies to the area of predictive data

mining, to combine the predicted classifications

(prediction) from multiple models, or from the

same type of model for different learning data.

It is also used to address the inherent instability

of results when applying complex models to

relatively small data sets. Suppose your data

mining task is to build a model for predictive

classification, and the dataset from which to

train the model (learning data set, which

contains observed classifications) is relatively

small. It could repeatedly sub-sample (with

replacement) from the dataset, and apply, for

example, a tree classifier to the successive

samples.

 In practice, very different trees will

often be grown for the different

samples, illustrating the instability of

models often evident with small

datasets. One method of deriving a

single prediction (for new observations)

is to use all trees found in the different

samples, and to apply some simple

voting: The final classification is the

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 9

one most often predicted by the

different trees. Note that some weighted

combination of predictions (weighted

vote, weighted average) is also possible,

and commonly used.

5. RESULT ANALYSIS

 Opening Jupyter Notebook using

Anaconda Navigator Analyzing the malware

and benign apps in the trained data set

0-Benign 1-Malicious

 Analyze the malware and benign apps in

the test data set Tracking performance of the

phone using Phone state

SUPPORT VECTOR MACHINE OUTPUT

array([1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0,

1, 1, 1, 1, 1, 1,

 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1,

1, 1, 1, 0, 1,

 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1,

0, 0, 1, 0, 0,

 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0],

dtype=int64)

Svm Confusion matrix

DECISION TREE OUTPUT

array([1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0,

1, 1, 1, 1, 0, 1,

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 10

 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,

0, 1, 1, 1, 1, 0, 1,

 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1,

0, 0, 0, 0, 0,

 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0],

dtype=int64)

Decision Tree Confusion Matrix

GAUSSIAN NAÏVE BAYES OUTPUT

array([1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0,

1, 1, 1, 1, 0, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

1, 1, 1, 1, 1,

 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1],

dtype=int64)

Gaussian Naïve Bayes Confusion Matrix

COMPARISON GRAPH

6. CONCLUSION

 In static analysis of Android malware,

machine learning algorithms have been used to

train classifiers with features of malicious apps

to build models that capable of detecting

malicious patterns. Differently, our

classification approach defines legitimate static

features for benign apps as opposite to

identifying malicious patterns. We utilize the

features of the top rated apps in a specific

category to define a profile of the common sets

of features for that category.

7. FUTURE ENHANCEMENT

 Our future work will consider three

aspects. First, including other static features

such as: functions calls in building the

classification models to get a better

http://www.ijadst.com/

International Journal of Advanced Development in
Science and Technology

Volume : 3 Issue : 03 April 2021 www.ijadst.com ISSN No: 2582-1059

IJADST Page 11

understanding of the processes that apps may

lunch in a way to increase the detection

accuracy of the classifiers. Second,

implementing the proposed solution on a large-

scale level by building profile models for other

categories and sub categories.By making this as

a web based application user can easily keep

track of the application details. Third, testing

the feasibility of integrating our solution with

dynamic detection techniques by profiling

dynamic features for each category; dynamic

features like system calls, network connections,

resources’ usage, and etc and allowing the each

and every user to access the portal easily.

8.REFERENCES

[1] Androguard usage.

https://code.google.com/p/androguard/wiki/Usa

ge. Accessed April 24, 2015. [2] Android -

statistics & facts — statista.

http://www.statista.com/topics/876/ android/.

Accessed April 19, 2015.

[3] Android and ios continue to dominate the

worldwide smartphone market with android

shipments just shy of 800 million in 2013,

according to idc. http://www.idc.

com/getdoc.jsp?containerId=prUS24676414.

Accessed April 19, 2015.

[4] Application fundamentals — android

developers. http://developer.android.com/

guide/components/fundamentals.html.

Accessed April 19, 2015.

[5] Are — download/installation.

https://redmine.honeynet.org/projects/are/ wiki.

Accessed April 28, 2015.

[6] SpyDroid: A Framework for Employing

Multiple Real-Time Malware Detectors on

Android-Shahrear Iqbal, et al 2018

[7] Samadroid: a novel 3-level hybrid malware

detection model for android operating system

saba arshad1, munam a. shah1, abdul wahid1,

amjad mehmood2,

houbing song 3, (senior member, ieee), and

hongnian yu4, 5

[8] Meta-Feature Classification to Explore

Automatic Detection of Malware Using

Segmentation Method Chandra Sekhar

Vasamsetty, Siva Sankar Chandu, Janakidevi

Maddala

[9] DroidMat: Android Malware Detection

through Manifest and API Calls Tracing 2012

Seventh Asia Joint Conference on Information

Security

[10] Improving Dynamic Analysis of Android

Apps Using Hybrid Test Inputn Generation

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S.

(2017). Improving Dynamic Analysis of

Android Apps Using Hybrid Test Input

Generation

http://www.ijadst.com/

