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ABSTRACT 

     In recent years, the usages of smart phones 

are increasing steadily and also growth of 

Android application users are increasing. Due 

to growth of Android application user, some 

intruder is creating malicious android 

application as tool to steal the sensitive data 

and identity theft / fraud mobile bank, mobile 

wallets.  

 There are so many malicious 

applications detection tools and software are 

available. But an effectively and efficiently 

malicious applications detection tools needed 

to tackle and handle new complex malicious 

apps created by intruder or hackers. In this 

paper we came up with idea of using machine 

learning approaches for detecting the malicious 

android application. First we have to gather 

dataset of past malicious apps as training set 

and with the help of Support vector machine 

algorithm and decision tree algorithm make up 

comparison with training dataset and trained 

dataset we can predict the malware android 

apps up to 93.2 % unknown / New malware 

mobile application. 

Keywords: dataset, machine learning 

algorithm- ensemble methods, python, 

predicting the accuracy of result, malware, 

threat analysis 

 

1. INTRODUCTION 

 Smartphones have become an integral 

part of our day-to-day life. New data for 

December 2018 shows that Android remains 

the most popular mobile operating system, with 

a worldwide market share of 75.16%. With 

over one million Android applications in major 

app stores, applications such as We Chat, 

TikTok, and mobile banking applications are 

used in our daily life and continue to play an 

increasingly important role.  

 Most of these applications have access 

to users’ private information such as their 

location, credit card, and contact information. 

Almost all applications access the users’ private 

data, although this provides users with better 

personalized services. It may also result in 

information leakage of private data and 

economic loss. Currently, static analysis and 

dynamic analysis are the two main types of 
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detection methods. Each approach has its merits 

and shortcomings. The static analysis methods 

such as Kirin, PApriori and DREBIN analyze 

applications without executing the program 

requiring low overheads. However, the methods 

cannot defend against antide compiling and 

obfuscation.   

  With malware being rapidly evolving, 

the machine learning method is used to perform 

Android malware detection. Consequently, 

gathering features that better represent 

malicious behavior as the features of machine 

learning is beneficial to improve the 

performance of malware detection.  

           By itself, Android has several security 

mechanisms in its different layers. The 

permission mechanism applied in the 

application layer is an important defence 

mechanism to protect sensitive resources on the 

Android platform.  

 Applications must declare dangerous 

permissions to access sensitive data. Several 

studies have investigated Android malicious 

applications based on the declared permissions, 

using permission-based methods. Although 

these methods avoid high overhead, they 

consider the declared permissions as the 

features of machine learning, which cannot 

truly reflect the difference between benign 

applications and malicious applications.  

 Thus, they cannot detect malicious 

applications that declare only a few, or 

dangerous permissions, which are also always 

declared by benign applications. Compared 

with permissions as features, application 

programming interfaces (APIs) represent the 

entire picture of application behavior provided 

by the Android system.     

 DroidAPIMiner exploits data flow 

analysis to extract the numbers of APIs used in 

malicious applications and benign applications 

to analyze the difference between them, which 

is similar to these methods. In general, the API 

feature set contains a very large number of 

features, and therefore, detection methods need 

extra time to extract the API features and to 

train detection models. It is worth noting that 

there is a corresponding relation between 

permissions and APIs. 

         In this paper, we present FDP, a 

lightweight Android malware detection method 

to mine hidden patterns of malware. According 

to previous studies, there is considerable 

difference between malicious applications and 

benign applications in terms of the declared 

permissions. 

 In addition, some dangerous 

permissions declared for different components 

reflect the purpose of the developers. It can be 

used to distinguish different purposes of the 

same dangerous permission. These features can 

represent the difference between benign 

applications and malicious applications. In 

terms of efficiency, FDP uses static methods to 

gather all features and analyzes an application 

in a reasonable time. 
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  2. PROPOSED SYSTEM 

         In proposed paper, we implements 

SIGPID, Significant Permission Identification 

(SIGPID).The goal of the sigid is to improve 

the apps permissions effectively and efficiently. 

This SIGPID system improves the accuracy and 

efficient detection of malware application. With 

the help of machine learning algorithms such as 

SVM and Decision Tree algorithms make a 

comparison between training dataset and 

trained dataset .Support vector machine 

algorithms act as a classifier which is used to 

classify malicious application and benign app.  

  We first use SVM and a small dataset to test 

our proposed MLDP model.  

 SVM determines a hyper plane/matrix 

that separates both classes with a maximal 

margin based on the training dataset that 

includes benign and malicious applications. In 

this case, one class is associated with malware, 

and the other class is associated with benign 

apps. Then, we assume the testing data as 

unknown apps, which are classified by mapping 

the data to the vector space to decide whether it 

is on the malicious or benign side of the hyper 

plane. Then, we can compare all analysis 

results with their original records to evaluate 

the malware detection correctness of the 

proposed model by using SVM. In order to 

show applicability and scalability of MLDP, we 

employ 67 commonly known machine learning 

algorithms and enlarge our dataset.  

 We compare the results between 

malware detection rate using all identified 135 

permissions (baseline) and malware detection 

using MLDP for each supervised machine 

learning algorithm. We observe that, by 

analyzing all permissions, machine learning 

algorithms with a tree structure, usually build 

better malware detection compared to others. 

Among all the machine learning algorithms 

with a tree structure, our method works best on 

decision tree, which is a very common 

classification method in machine learning. 

Decision tree should use training dataset to 

build a classifier to decide which class the 

testing data should be, requires a lot of pre-

processing work before the classifier was built. 

When there are too many attributes of training 

dataset, decision tree hits a poor accuracy and 

the training phase tend to take more time and 

memory. So, the pruning of the decision tree is 

imperative, which is consistent with our MLDP. 

Consequently, it is more advantageous to use 

MLDP to perform malware detection as it can 

be as effective while notably conserving time 

and memory.   

 Significant Permission Identification 

for Android Malware Detection. (SIGPID):  

 The goal of Significant Permission 

Identification (SIGPID) system is to achieve 

high malware detection accuracy and efficiency 

while analyzing the minimal number of 

permissions. To achieve this goal, our system 

extracts permission uses from application 
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packages, but instead of focusing on all the 

requested permissions, SIGPID mainly focuses 

on permissions that can reliably improve the 

malware detection rate. This approach, in 

effect, eliminates the need to analyze 

permissions that have little or no significant 

influence on malware detection effectiveness. 

In a nutshell, SIGPID prunes permissions that 

have low impacts on detection effectiveness 

using multi-level data pruning to reduce 

analysis efforts.  

 Our system consists of three major 

components, designed based on real-time data 

analysis: (i) permission ranking with negative 

rate; (ii) support based permission ranking; and 

(iii) permission mining with association rules. 

After pruning, SIGPID employs supervised 

machine learning classification methods to 

identify potential Android malware. Finally, 

SIGPID reports malware detection summary to 

the analysts. 

 

Multi-Level Data Pruning (MLDP)  

 The first component of SIGPID is the 

multi-level data pruning process to identify 

significant permissions to eliminate the need of 

considering all available permissions in 

Android. No app requests all the permissions, 

and the ones that an app requests are listed in 

the Android application package (APK) as part 

of manifest.xml. When we need to analyze a 

large number of apps (e.g., several hundred 

thousand), the total number of permissions 

requested by all apps can be overwhelmingly 

large, resulting in long analysis time. This high 

analysis overhead can negatively affect the 

malware detection efficiency as it reduces 

analyst productivity. We propose three levels of 

data pruning methods to filter out permissions 

that contribute little to the malware detection 

effectiveness. Thus, they can be safely removed 

without benign apps malicious. 

 

3.ALGORITHM 

ENSEMBLE  

 Ensemble methods are meta-algorithms 

that combine several machine learning 

techniques into one predictive model in order to 

decrease variance (bagging), bias(boosting), or 

improve predictions(stacking).  Ensemble 

methods can be divided into two groups:  

o Sequential ensemble methods where the 

base learners are generated sequentially 

(e.g. AdaBoost). The basic motivation of 

sequential methods is to exploit the 

dependence between the base learners. 

The overall performance can  be boosted 

by weighing previously mislabelled 

examples with higher weight. 

o parallel ensemble methods where the base 

learners are generated in parallel (e.g. 

Random Forest). The basic motivation of 

parallel methods is to exploit 

independence between the base learners 

since the error can be reduced 

dramatically by averaging.  
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 Most ensemble methods use a single 

base learning algorithm to produce 

homogeneous base learners, i.e. learners of the 

same type, leading to homogeneous ensembles. 

There are also some methods that use 

heterogeneous learners, i.e. learners of different 

types, leading to heterogeneous ensembles. In 

order for ensemble methods to be more 

accurate than any of its individual members, the 

base learners have to be as accurate as possible 

and as diverse as possible.  

 

BAGGING  

 Bagging stands for bootstrap 

aggregation. One way to reduce the variance of 

an estimate is to average together multiple 

estimates. For example, we can train M 

different trees on different subsets of the data 

(chosen randomly with replacement) and 

compute the ensemble:  

Bagging uses bootstrap sampling to obtain the 

data subsets for training the base learners. For 

aggregating the outputs of base learners, 

bagging uses voting for classification and 

averaging for regression. 

 

BOOSTING  

 Boosting refers to a family of 

algorithms that are able to convert weak 

learners to strong learners. The main principle 

of boosting is to fit a sequence of weak 

learners− models that are only slightly better 

than random guessing, such as small decision 

trees− to weighted versions of the data. More 

weight is given to examples that were 

misclassified by earlier rounds. The predictions 

are then combined through a weighted majority 

vote (classification) or a weighted sum 

(regression) to produce the final prediction. The 

principal difference between boosting and the 

committee methods, such as bagging, is that 

base learners are trained in sequence on a 

weighted version of the data. 

 

STACKING  

 Stacking is an ensemble learning 

technique that combines multiple classification 

or regression models via a meta-classifier or a 

meta-regress or. The base level models are 

trained based on a complete training set, then 

the meta-model is trained on the outputs of the 

base level model as features.  

 The base level often consists of different 

learning algorithms and therefore stacking 

ensembles are often heterogeneous.  

 

SUPPORT VECTOR MACHINE  

 Support Vector Machine or SVM is one 

of the most popular Supervised Learning 

algorithms, which is used for Classification as 

well as Regression problems. However, 

primarily, it is  used for Classification problems 

in Machine Learning. The goal of the SVM 

algorithm is to create the best line or decision 

boundary that can segregate n-dimensional 

space into classes so that we can easily put the 
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new data point in the correct category in the 

future. This best decision boundary is called a 

hyper plane. 

 

DECISION TREE ALGORITHM  

 Decision Tree algorithm belongs to the 

family of supervised learning algorithms. 

Unlike other supervised learning algorithms, 

the decision tree algorithm can be used for 

solving regression and classification problems 

too.  

 The goal of using a Decision Tree is to 

create a training model that can use to predict 

the class or value of the target variable by 

learning simple decision rules inferred from 

prior data(training data). In Decision Trees, for 

predicting a class label for a record we start 

from the root of the tree. We compare the 

values of the root attribute with the record’s 

attribute. On the basis of comparison, we 

follow the branch corresponding to that value 

and jump to the next node. 

 

NAIVE BAYES  

 Naive Bayes classifiers are a collection 

of classification algorithms based on Bayes’ 

Theorem. It is not a single algorithm but a 

family of algorithms where all of them share a 

common principle, i.e. every pair of features 

being classified is independent of each other.  

Gaussian Naive Bayes classifier  

 In Gaussian Naive Bayes, continuous 

values associated with each feature are assumed 

to be distributed according to a Gaussian 

distribution. A Gaussian distribution is also 

called Normal distribution. 

 

4.MODULE 

DATA COLLECTION  

 ML depends heavily on data. It’s the 

most crucial aspect that makes algorithm 

training possible and explains why machine 

learning became so popular in recent years. But 

regardless of your actual terabytes of 

information and data science expertise, if you 

can’t make sense of data records, a machine 

will be nearly useless or perhaps even harmful.  

Data collection is the process of gathering and 

measuring information from countless different 

sources. In order to use the data we collect to 

develop practical artificial intelligence (AI) and 

machine learning solutions, it must be collected 

and stored in a way that makes sense for the 

business problem at hand.  

 In a nutshell, data preparation is a set of 

procedures that helps make your dataset more 

suitable for machine learning. In broader terms, 

the data prep also includes establishing the right 

data collection mechanism. And these 

procedures consume most of the time spent on 

machine learning.  

 To classify about the android apps we 

searched a dataset which consist of 1000 of 

applications . In 2020 we explored Android 

Genome Project   
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(MalGenome), it is a dataset which was active 

from 2015 until the end of the year 2020, this 

set of malware has a size of 1260 applications, 

grouped into a total of 49 families. Today, we 

can find other jobs such as: Drebin, a research 

project offering a total of 5560 applications 

consisting of 179 malware families; 

AndrooZoo, which includes a collection of 

5669661 applications Android from different 

sources (including Google Play); VirusShare, 

another repository that provides samples of 

malware for cyber security researchers; and 

Droid Collector, this is another set which 

provides around 8000 benign applications and 

5560 malware samples, moreover, it facilitates 

us samples of network traffic as pcap files. So 

we collected the data set from kaggle . 

 

PRE PROCESSING  

 Organize your selected data by 

formatting, cleaning and sampling from it.  

Three common data pre-processing steps are:  

1. Formatting  

2. Cleaning  

3. Sampling  

 

 Formatting: The data you have 

selected may not be in a format that is suitable 

for you to work with. The data may be in a 

relational database and you would like it in a 

flat file, or the data may be in a proprietary file 

format and you would like it in a relational 

database or a text file.  

Cleaning: Cleaning data is the removal or 

fixing of missing data. There may be data 

instances that are incomplete and do not carry 

the data you believe you need to address the 

problem. These instances may need to be 

removed. Additionally, there may be sensitive 

information in some of the attributes and these 

attributes may need to be anonym zed or 

removed from the data entirely.  

Sampling: There may be far more selected data 

available than you need to work with. More 

data can result in much longer running times for 

algorithms and larger computational and 

memory requirements. You can take a smaller 

representative sample of the selected data that 

may be much faster for exploring and 

prototyping solutions before considering the 

whole dataset.  

 

FEATURE EXTRACTION  

 Next thing is to do Feature extraction is 

an attribute reduction process. Unlike feature 

selection, which ranks the existing attributes 

according to their predictive significance, 

feature extraction actually transforms the 

attributes. The transformed attributes, or 

features, are linear combinations of the original 

attributes. Finally, our models are trained using 

Classifier algorithm. We use classify module on 

Natural Language Toolkit library on Python. 

We use the labelled dataset gathered. The rest   

of our labelled data will be used to evaluate the 

models. Some machine learning algorithms 
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were used to classify pre-processed data. The 

chosen classifiers were Decision Tree, Support 

Vector Machine. These algorithms are very 

popular in text classification tasks.  

 

CLASSIFICATION  

 The purpose of this phase is to select 

different features for different classes by 

applying the information gain or gain ratio in 

order to identify relevant features for each 

binary classifier. The attribute with the highest 

normalized information gain is chosen to make 

the decision. The C4.5 algorithm then recourse 

on the smaller sub lists.  

This algorithm has a few base cases.  

 All the samples in the list belong to the 

same class. When this happens, it 

simply creates a leaf node for the 

decision tree saying to choose that class.  

 None of the features provide any 

information gain. In this case, C4.5 

creates a decision node higher up the 

tree using the expected value of the 

class.  

 Instance of previously-unseen class 

encountered. Again, C4.5 creates a 

decision node higher up the tree using 

the expected value. 

  

EFFICIENCY CALCULATION  

 The effect of combining different 

classifiers can be explained with the theory of 

bias-variance decomposition. Bias refers to an 

error due to a learning algorithm while variance 

refers to an error due to the learned model. This 

is why the idea emerged of combining both in 

order to profit from the advantages of both 

algorithms and obtain an overall error 

reduction.  

 The concept of bagging (voting for 

classification, averaging for regression-type 

problems with continuous dependent variables 

of interest) applies to the area of predictive data 

mining, to combine the predicted classifications 

(prediction) from multiple models, or from the 

same type of model for different learning data. 

It is also used to address the inherent instability 

of results when applying complex models to 

relatively small data sets. Suppose your data 

mining task is to build a model for predictive 

classification, and the dataset from which to 

train the model (learning data set, which 

contains observed classifications) is relatively 

small. It could repeatedly sub-sample (with 

replacement) from the dataset, and apply, for 

example, a tree classifier to the successive 

samples.  

 In practice, very different trees will 

often be grown for the different 

samples, illustrating the instability of 

models often evident with small 

datasets. One method of deriving a 

single prediction (for new observations) 

is to use all trees found in the different 

samples, and to apply some simple 

voting: The final classification is the 
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one most often predicted by the 

different trees. Note that some weighted 

combination of predictions (weighted 

vote, weighted average) is also possible, 

and commonly used. 

 

5. RESULT ANALYSIS 

 Opening Jupyter Notebook using 

Anaconda Navigator Analyzing the malware 

and benign apps in the trained data set 

 

 

 

0-Benign    1-Malicious 

 Analyze the malware and benign apps in 

the test data set Tracking  performance of the 

phone using Phone state 

  

SUPPORT VECTOR MACHINE OUTPUT 

array([1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 

1, 1, 1, 1, 1, 1, 

       0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 

1, 1, 1, 0, 1, 

       0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 

0, 0, 1, 0, 0, 

       0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0], 

dtype=int64) 

 

 

Svm Confusion matrix 

  

 

DECISION TREE OUTPUT 

array([1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 

1, 1, 1, 1, 0, 1, 
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       0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,   

0, 1, 1, 1, 1, 0, 1, 

       0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 

0, 0, 0, 0, 0, 

       0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0], 

dtype=int64) 

Decision Tree Confusion Matrix 

 

 

GAUSSIAN NAÏVE BAYES OUTPUT 

array([1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 

1, 1, 1, 1, 0, 1, 

       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 

1, 1, 1, 1, 1, 

       0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 0, 0, 1, 1, 

       1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1], 

dtype=int64) 

Gaussian Naïve Bayes Confusion Matrix 

 

COMPARISON GRAPH 

 

 

 

6. CONCLUSION  

 In static analysis of Android malware, 

machine learning algorithms have been used to 

train classifiers with features of malicious apps 

to build models that capable of detecting 

malicious patterns. Differently, our 

classification approach defines legitimate static 

features for benign apps as opposite to 

identifying malicious patterns. We utilize the 

features of the top rated apps in a specific 

category to define a profile of the common sets 

of features for that category. 

 

7. FUTURE ENHANCEMENT  

 Our future work will consider three 

aspects. First, including other static features 

such as: functions calls in building the 

classification models to get a better 
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understanding of the processes that apps may 

lunch in a way to  increase the detection 

accuracy of the classifiers. Second, 

implementing the proposed solution on a large-

scale level by building profile models for other 

categories and sub categories.By making this as 

a web based application user can easily keep 

track of the application details. Third, testing 

the feasibility of integrating our solution with 

dynamic detection techniques by profiling 

dynamic features for each category; dynamic 

features like system calls, network connections, 

resources’ usage, and etc and allowing the each 

and every user to access the portal easily. 
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